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An algorithm for evaluating Slater integrals in a B-spline basis is introduced. Based
on the piecewise property of the B-splines, the algorithm divides the two-dimensional
(r1, r2) region into a number of rectangular cells according to our chosen grid and
implements the two-dimensional integration over each individual cell using Gaussian
quadrature. Over the off-diagonal cells, the integrands are separable so that each two-
dimensional cell-integral is reduced to a product of two one-dimensional integrals.
Furthermore, the scaling invariance of the B-splines in the logarithmic region of the
chosen grid is fully exploited such that only some of the cell integrations need to
be implemented. The values of given Slater integrals are obtained by assembling
the cell integrals. This algorithm significantly improves the efficiency and accuracy
of the traditional method that relies on the solution of differential equations and
renders the B-spline method more effective when applied to multi-electron atomic
systems. c© 1999 Academic Press
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1. INTRODUCTION

Critical to the success of the many-electron atomic structure calculation is an accurate and
efficient evaluation of the Slater integrals. The Slater integrals are integrations of a product
of four atomic radial functions and a coupling weighting factor over the two-dimensional
radial region, i.e.,

Rk(a, b; c, d) =
∫ ∞

0

∫ ∞
0

r k
<

r k+1
>

Pa(r1)Pb(r2)Pc(r1)Pd(r2) dr1 dr2, (1)

wherePa, Pb, Pc, and Pd are the radial functions of atomic orbitals,k is an integer, and
r<, r> are the min(r1, r2) and max(r1, r2), respectively. The radial function of orbitala is
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approximated by

Pa(r ) ≈
∑

i

ai Bi (r ), (2)

whereBi (r ) is the basis function andai the expansion coefficient.
Splines as basis functions in many-electron atomic systems were introduced over 20

years ago when Altenberger-Siczek and Gilbert [1] investigated the two-electron helium
atom. Under the spline basis, the Slater integral becomes

Rk(a, b; c, d) =
∑

i

∑
j

∑
i ′

∑
j ′

ai bj ci ′dj ′R
k(i, j ; i ′, j ′), (3)

where the Slater matrix elementRk(i, j ; i ′, j ′) is

Rk(i, j ; i ′, j ′) =
∫ ∞

0

∫ ∞
0

r k
<

r k+1
>

Bks
i (r1)B

ks
j (r2)B

ks
i ′ (r1)B

ks
j ′ (r2) dr1 dr2. (4)

In their work they used both cardinal splines and B-splines. Because of the apparently large
number of numerical operations needed to evaluate this integral accurately, they finally
concluded that B-splines were not suitable for atomic structure calculations.

However, there has recently been a renewed interest in the use of B-splines in complex
atomic systems: Bottcher and Strayer [2] applied the B-splines to time-dependent problems,
Johnson and co-workers to many-body perturbation theory [3–5], Fischer and co-workers
[6–9] to Hartree–Fock calculations and continuum problems, Hansen and co-workers to
orthogonal operators and Rydbergy series [10, 11], Decleva and co-workers [12–14] to
multichannel continuum problems, and van der Hart to R-matrix theory [15]. More detailed
discussions can be found in a recent review by Sapirstein and Johnson [16].

An important development was finding a method for evaluating the Slater matrix elements
[8, 9]. In this approach, the Slater matrix elementsRk(i, j ; i ′, j ′) are rewritten as

Rk(i, j ; i ′, j ′) =
∫ ∞

0

1

r1
Bks

i (r1)Y
k
j j ′(r1)B

ks
i ′ (r1) dr1, (5)

where

Yk
j j ′(r1) = r1

∫ ∞
0

Bks
j (r2)

r k
<

r k+1
>

Bks
j ′ (r2) dr2. (6)

The functionYk
j j ′(r ) can be computed by solving the following differential equation for the

given boundary conditions

d2Yk
j j ′(r )

dr2
= k(k+ 1)

r 2
Yk

j j ′(r )−
2k+ 1

r
Bks

j (r )B
ks
j ′ (r )

Yk
j j ′(0) = 0 (7)

d

dr
Yk

j j ′(r ) = −
k

r
Yk

j j ′(r )+ Bks
j (r )B

ks
j ′ (r ) asr →+∞.

Then the Slater matrix element in Eq. (5) is obtained by direct integration. The Slater
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integrals as a quadruple summation of the matrix elements are subsequently assembled. In
order to avoid the two-point boundary value problem, Hartree [17] replaced the second-order
differential equation by a pair of first-order equations that could be integrated outward from
the origin and inward from larger , a method suitable for numerical integration. However,
when used in spline-based applications, the special characteristics of the B-splines cannot
readily be exploited. In this paper, we have introduced and implemented an algorithm which
is designed specifically for the spline-based applications. It takes advantage of the piecewise
property and scaling invariance of the B-splines and implements the integration in Eq. (4)
by cells. Since the system and user time spent on the evaluation of the Slater matrix elements
is much more significant than that spent on assembling the Slater integrals from the matrix
elements, significant improvements in both efficiency and accuracy in evaluating the Slater
integrals are observed under the current algorithm.

2. SLATER INTEGRALS IN B-SPLINES

2.1. Definition of B-Splines

Following de Boor [18], we divide the interval [0, R] into segments. The endpoints of
these segments are given by a knot sequenceti , i = 1, 2, . . . ,n+ ks. The B-splines of order
ks, Bks

i (r ), are a set of piecewise polynomials defined on the knot sequence recursively by
the relations

B1
i (r ) =

{
1, ti ≤ r < ti+1

0, otherwise
(8)

and

Bks
i (r ) =

r − ti
ti+ks−1− ti

Bks−1
i (r )+ ti+ks − r

ti+ks − ti+1
Bks−1

i+1 (r ). (9)

The functionBks
i (r ) is a piecewise polynomial of degreeks− 1 inside the intervalti ≤

r < ti+ks which vanishes outside this interval. The sum at any pointr of all of the B-splines
is unity [19], i.e.,

∑
i

Bks
i (r ) = 1. (10)

The set of B-splines of orderks on the knot sequenceti forms a complete basis for piecewise
polynomials of degreeks− 1 on the interval spanned by the knot sequence. The knots
defining our grid haveks-fold multiplicity at the endpoints, namelyt1= t2= · · · = tks = 0
and tn+1= tn+2= · · · = tn+ks = R. When multiple knots are encountered, limiting forms
of the above recursive definition of the B-splines must be used. Forks> 1, the B-splines
generally vanish at their endpoints. However, atr = 0 the first B-spline is equal to 1 with all
others vanishing and atr = R the last B-spline shows the same behavior as the first B-spline
at the origin. The two end B-splines are generally related to the boundary conditions of the
problem under investigation [20]. A set of B-splines of order 5 in the region [0, 1] is shown
in Fig. 1.
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FIG. 1. The set of B-splines of order 5 in the region [0, 1] on the knot sequencet1= t2= · · · = t5= 0, ti =
ti−1 + 0.1 for i = 6, 7, · · · , 15 andt15= t16= · · · = t19= 1.

2.2. A General Grid for Atomic Systems

One of the advantages of a spline basis is that the choice of grid may be tailored to
the problem under investigation. A different type of grid can easily be used in different
regions. In atomic physics calculation, a general grid for both bound and continuum states
for arbitrary nuclear charges was introduced by Fischer [7, 20] and subsequently applied
successfully in the calculation of photoionization [12, 21]. In the grid definition, four dif-
ferent parameters are introduced. They are the step sizeh= 2−m with m an integer, the
maximum step sizehmax, the maximum rangeR, and the order of splinesks. The grid points
are defined through the arrayti such that

ti = 0, for i = 1, . . . , ks

ti+1 = ti + h, for i = ks, . . . , ks +m

ti+1 = ti (1+ h), for 1≤ ti+1− ti < hmax

ti+1 = ti + hmax, for ti < Z R

ri = ti /Z, for all i,

wherer is the radial coordinate andZ is the nuclear charge. The rules for setting such a
knot sequence can be found in Ref. [20]. Briefly speaking, since the Hamiltonians of atomic
systems and the corresponding orbital wavefunctions scale approximately with respect to
the nuclear chargeZ, the knot sequence is defined for the variablet = Zr . For the continuum
calculation, the logarithmic grid is shown to be a good choice for smallr , except near the
origin, where a constant grid can avoid the large numbers of small intervals. Meanwhile,
the logarithmic grid results in a very large step size for larger , which can be larger than
the wavelength of the oscillatory continuum wavefunctions, therefore a constant grid in the
larger region is used.
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2.3. Symmetry of the Slater Matrix Elements

The Slater matrix elements have two types of symmetries—they are invariant under the
exchange of certain indices and are scaling invariant under coordinate displacement within
the exponential region.

2.3.1. Exchange symmetry of the Slater matrix elements.From the definition of the
Slater matrix elements, it is trivial to show that the exchange of indicesi andi ′, j and j ′,
and{i, i ′} and{ j, j ′} does not affect the result of the Slater matrix element, i.e.,

Rk(i, j ; i ′, j ′) = Rk(i ′, j ; i, j ′)

= Rk(i, j ′; i ′, j )

= Rk( j, i ; j ′, i ′)

= Rk( j ′, i ; j, i ′)

= Rk( j, i ′; j ′, i )

= Rk( j ′, i ′; j, i )

= Rk(i ′, j ′; i, j ).

Therefore, only about 1/8 of the Slater matrix elements need to be evaluated.

2.3.2. Scaling laws of the Slater matrix elements.The grid with an exponentially in-
creasing interval length results in several properties that can be exploited to avoid redundant
calculations. Suppose the splines discussed lie entirely within the exponential region. Since
the splines are normalized such that the sum of the values at any point in the range [0, R]
is equal to unity, a simple displacement invariance applies. Let the left-most knot defining
Bks

i (r ) beti and letr = ti + s. Then

Bks
i (ti + s) = Bks

i+1((1+ h)(ti + s)) = Bks
i+1(ti+1+ s(1+ h)). (11)

From the displacement invariance of the splines, several scaling laws exist [22]. The ones
relevant to the Slater matrix elements are〈

Bks
i+1(r )|r k|Bks

j+1(r )
〉 = (1+ h)1+k

〈
Bks

i (r )|r k|Bks
j (r )

〉
(12)

Rk(i + 1, j + 1; i ′ + 1, j ′ + 1) = (1+ h)Rk(i, j ; i ′, j ′). (13)

However, the most valuable properties to the current integration by cell method are the
scaling laws over individual cells, i.e.,∫ ri v+2

ri v+1

Bks
i+1(r )B

ks
j+1(r )r

k dr = (1+ h)1+k
∫ ri v+1

ri v

Bks
i (r )B

ks
j (r )r

k dr (14)

and ∫ ri v+2

ri v+1

∫ r j v+2

r j v+1

r k
<

r k+1
>

Bks
i+1(r1)B

ks
j+1(r2)B

ks
i ′+1(r1)B

ks
j ′+1(r2) dr1 dr2

= (1+ h)
∫ ri v+1

ri v

∫ r j v+1

r j v

r k
<

r k+1
>

Bks
i (r1)B

ks
j (r2)B

ks
i ′ (r1)B

ks
j ′ (r2) dr1 dr2. (15)

A detailed proof of the scaling laws over a cell is given in Appendix A of Ref. [23].
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3. INTEGRATION BY CELL ALGORITHM

The distinguishing feature of the B-splines is their piecewise property. Every spline is
a positive polynomial over a finite range. Ifks order B-splines are chosen, the splineBks

i

is non-trivial only in the range from knoti to knot i + ks, i.e., the splineBks
i is non-zero

only in intervals MAX(1, i − ks+ 1), MAX(1, i − ks+ 1)+ 1, . . . ,MIN( i, nv), wherenv
is the total number of intervals. This feature leads to an important constraint such that at
any intervali v in the one-dimensional region, the number of splines whose values are not
zero is alwaysks. In fact the non-zero ones are the splinesi v, i v+ 1, . . . , andi v+ ks− 1.
Other splines at intervali v simply vanish. When this property is applied to the Slater matrix
elements

Rk(i, j ; i ′, j ′) =
∫ ∞

0

∫ ∞
0

r k
<

r k+1
>

Bks
i (r1)B

ks
j (r2)B

ks
i ′ (r1)B

ks
j ′ (r2) dr1 dr2, (16)

Rk(i, j ; i ′, j ′)= 0, if either|i ′ − i | ≥ ks or | j ′ − j | ≥ ks. Moreover, the integration contribut-
ing to Rk(i, j ; i ′, j ′) extends over only the cells in whichBks

i (r1) andBks
i ′ (r1), andBks

j (r2)

andBks
j ′ (r2) overlap. Because of the symmetry of the Slater matrix elements, we can assume

without loss of generality thati ≤ i ′, j ≤ j ′, andi ≤ j . The area over which the integrand
contributes to the Slater matrix elementRk(i, j ; i ′, j ′) is illustrated in Fig. 2. The area is a
block of cells stretching from intervali − ks+ 1 to i ′ in ther1 direction and from interval
j − ks+ 1 to j ′ in ther2 direction. The integration by cell algorithm exploits this feature
thoroughly. Since there are onlyks splines which are not zero along ther1 or r2 direction in
each cell, we can integrate all the non-trivial{i, i ′, j, j ′} combinations over each individual
cell first. The Slater matrix elements are then obtained as a summation of the cell integrals.

3.1. Integration over the Off-Diagonal Cells

Over the off-diagonal cells the integrand in the Slater matrix element is separable and
the integration limits are not coupled. Therefore, the two-dimensional integral is reduced

FIG. 2. Illustration of the area over which the integrand of the Slater matrix elementRk(i, j ; i ′, j ′) is non-
trivial. The area is a block of cells stretching from intervali − ks+ 1 to i ′ in the r1 direction and from interval
j − ks+ 1 to j ′ in ther2 direction.
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to a product of two one-dimensional integrals. Assumei v < j v. Then

Rk(i, j ; i ′, j ′; i v, j v) =
∫ r j v+1

r j v

∫ ri v+1

ri v

r k
<

r k+1
>

Bks
i (r1)B

ks
j (r2)B

ks
i ′ (r1)B

ks
j ′ (r2) dr1 dr2

=
∫ ri v+1

ri v

r k
1 Bks

i (r1)B
ks
i ′ (r1) dr1

∫ r j v+1

r j v

1

r k+1
2

Bks
j (r2)B

ks
j ′ (r2) dr2

= r k(i, i ′; i v)× r−(k+1)( j, j ′; j v), (17)

where

r k(i, i ′; i v) =
∫ ri v+1

ri v

r k
1 Bks

i (r1)B
ks
i ′ (r1) dr1, (18)

r−(k+1)( j, j ′; j v) =
∫ r j v+1

r j v

1

r k+1
2

Bks
j (r2)B

ks
j ′ (r2) dr2. (19)

Although there arenv(nv −1) off-diagonal cells, we only need to calculate and store thenv
two-dimensional moment arraysr k(i, i ′; i v) andr−(k+1)( j, j ′; j v) for later assembly. The
arrays ofr k(i, i ′; i v) andr−(k+1)(i, i ′; i v) with i, i ′ = 1, . . . , ks andi v= 1, . . . ,nv can be
evaluated effectively using Gaussian quadrature withks Gaussian points. Note that because

r k(i, i ′; i v) = r k(i ′, i ; i v) (20)

r−(k+1)(i, i ′; i v) = r−(k+1)(i ′, i ; i v), (21)

only r k(i, i ′; i v) andr−(k+1)(i, i ′; j v) such thati ≤ i ′ need to be evaluated. Moreover, the
evaluation can be further reduced by using the scaling law in Eq. (14) in the logarithmic grid
region. The storage ofr k(i, i ′; i v) andr−(k+1)(i, i ′; j v) takesnvk2

s locations in memory,
ignoring symmetry, though only about half these need to be computed.

3.2. Integration over the Diagonal Cells

Over the diagonal cells the two coordinates in the integrand (the integration limits) of the
Slater matrix elements are coupled. Moreover, the integrand is not continuous across the
cell diagonal wherer1= r2. Although there are onlynv cells, the diagonal cell integration
is the most CPU intensive part in the evaluation of the Slater matrix element and it is also
the major barrier towards achieving highly accurate matrix elements.

We separate the rectangular cell into two triangles so that the integrand inside each triangle
is continuous. The integration over the rectangular cell is then a summation of integrations
over the two triangles, which are symmetric with respect to index exchanges, i.e.,

Rk(i, j ; i ′, j ′; i v) =
∫ ri v+1

ri v

∫ ri v+1

ri v

r k
<

r k+1
>

Bks
i (r1)B

ks
j (r2)B

ks
i ′ (r1)B

ks
j ′ (r2) dr1 dr2

=
∫ ri v+1

ri v

Bks
i (r1)B

ks
i ′ (r1) dr1 ·

{
1

r k+1
1

∫ r1

ri v

r k
2 Bks

j (r2)B
ks
j ′ (r2) dr2

+ r k
1

∫ ri v+1

r1

1

r k+1
2

Bks
j (r2)B

ks
j ′ (r2) dr2

}
= Rk

1(i, j, i ′, j ′; i v)+ Rk
1( j, i, j ′, i ′; i v) (22)
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where

Rk
1(i, j, i ′, j ′; i v) =

∫ ri v+1

ri v

Bks
i (r1)B

ks
i ′ (r1) dr1

1

r k+1
1

∫ r1

ri v

r k
2 Bks

j (r2)B
ks
j ′ (r2) dr2. (23)

We use Gaussian quadrature again to do the integration over the triangular cell in Eq. (23).
The key for an effective evaluation is to choose Gaussian grid points such that the avail-
able B-spline values used in the one-dimensional integration can be exploited and the new
B-spline values needed to achieve the required accuracy are minimized. We know that
n point Gaussian integration has 2n− 1 degrees of accuracy. It is obvious that at least a
ks by ks Gaussian grid with respect to both coordinates is needed to achieve the highest
algebraic accuracy for the integrals in Eq. (23) fork= 0. Therefore, we apply the origi-
nal Gaussian points used in the evaluation of one-dimensional integrals,r k(i, i ′; i v) and
r−(k+1)( j, j ′; j v), to the two-dimensional integration with respect to coordinater1. In the
two-dimensional integration regarding coordinater2, we also useks Gaussian points. A
graphical representation of the chosen Gaussian points forks= 8 is shown in Fig. 3. The
star is the original Gaussian point used in the one-dimensional integration and the circle
is the Gaussian point used in current triangular cell integration. With this two-dimensional
grid, the difficulty of the cell integrals near the origin because of the singularity of the
integrand is minimized and uniformly accurate results for all the Slater integrals can be
obtained. The evaluation can be further reduced by using the scaling law in Eq. (15) in
the logarithmic grid region. The full storage ofRk

1(i, j, i ′, j ′; i v) takesnvk4
s locations in

memory, ignoring symmetry(i ≤ i ′, j ≤ j ′, i ≤ j ) though now only about 1/8 of the values
need to be computed. Practical calculation demonstrates the effectiveness of current choice
of grid points (see later section).

3.3. Assembly of the Cell Integrals

Once all the cell integralsr k(i, i ′; i v), r−(k+1)( j, j ′; j v), andRk
1(i, j, i ′, j ′; i v) are pre-

pared, the Slater matrix elements in Eq. (16) can be assembled straightforwardly. A

FIG. 3. Graphical representation of the Gaussian points forks= 8. The star is the original Gaussian point
used in the one-dimensional integration and the circle is the Gaussian point used in current two-dimensional cell
integration.
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FORTRAN 90 code for evaluating the cell integrals and assembling the Slater matrix ele-
ments from the cell integrals can be found in Ref. [23]. The computational effort of putting
the pieces together is almost trivial. Since the Slater matrix elements need more space to
store than the cell integrals, it is more efficient to store the cell integrals directly. When need
for the Slater matrix elements arises, we can assemble them immediately.

Once all of the Slater matrix elements are assembled, the value of any Slater integral in
Eq. (3) can be easily obtained.

3.4. An Alternative to the Diagonal-Cell Integration

The integration over a diagonal cell in Eq. (22) can be implemented in an alternative way.
The cell integral can be rewritten as

Rk(i, j ; i ′, j ′; i v) =
∫ ri v+1

ri v

dr1r
k
1 Bks

i (r1)B
ks
i ′ (r1)

∫ ri v+1

ri v

dr2
1

r k+1
2

Bks
j (r2)B

ks
j ′ (r2)

+
∫ ri v+1

ri v

dr1Bks
i (r1)B

ks
i ′ (r1)

∫ r1

ri v

dr2Bks
j (r2)B

ks
j ′ (r2)

{
r k

2

r k+1
1

− r k
1

r k+1
2

}
,

(24)

where the first term in Eq. (24) is a product of two one-dimensional integrals which are
evaluated during the off-diagonal cell integration in Eq. (17) and the second term is a coupled
two-dimensional integral over a triangular cell. The second term has a nice property such
that the integrand is zero along the hypotenuse of the cell and becomes most significant
at the low-right corner of the cell (Fig. 4). To exploit this property, we make a coordinate

FIG. 4. Graphical representation of the Gaussian points forks= 8. The stars represent the points that would
be used for two-dimensional integration over the square using Gaussian quadrature in each dimension and the
circles represent the points used in the current two-dimensional cell integration over the triangle.
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rotation

x = r1+ r2√
2

(25)
y = r1+ r2√

2
,

where the new coordinatesx andy are always positive in the integration area. The second
term in Eq. (24) is then transformed as

Rk(i, j ; i ′, j ′; i v)|term2=
√

2
∫ ri v+1− ri v√

2

0
dy
∫ √2ri v+1−y

√
2ri v+y

dx Bks
i

(
x+ y√

2

)
Bks

i ′

(
x+ y√

2

)
· Bks

j

(
x− y√

2

)
Bks

j ′

(
x− y√

2

){
(x− y)k

(x + y)k+1
− (x+ y)k

(x− y)k+1

}
. (26)

Again we use two-dimensional Gaussian quadrature to perform the integration over the
triangular cell. In Fig. 4 a graphical representation of the adapted optimal Gaussian points
is shown. The stars represent the original Gaussian points that would be used in a two-
dimensional integration over the square and the circles represent the Gaussian point used
in the current triangular cell integration over the triangle. With this two-dimensional grid,
greater weight of integration is located at the low-right corner of the triangular cell where
the integrand is most significant. This approach however has drawbacks. Note that the
transformation results in a singularity in the integrands whenx= y (orr2= 0) and also when
x=−y (or r1= 0). The present scheme does not pay special attention to these singularities
of the integrand at the origin. Moreover, the B-spline itself as a function of one variable
r1 or r2 becomes a function of two variablesx andy, which leads to more computational
effort during the integration. As the results in the next section will show, this approach is
not as accurate.

4. RESULTS AND DISCUSSIONS

We have implemented the two variants of the integration-by-cell algorithm for the Slater
matrix elements in FORTRAN 90 and assembled the Slater integrals thereafter. The tradi-
tional algorithm based on solving the differential equation is also implemented for compar-
ison. The Slater integral package we developed is divided into 4 modules.

define grid This first module gets input parameters for the grid and sets up the knots
for splines according to our grid scheme.

define spline This second module initializes the splines and their derivatives and
evaluates the hydrogenic matrix elements (the one-electron Hamiltonian operator in spline
basis).

set Slater matrix elements This third module sets up the Slater matrix elements for
a givenk with both the integration-by-cell algorithm and the traditional one.

test Slater integrals The fourth module determines a set of hydrogenic orbitals in
terms of the spline basis and calculates a series of Slater integrals from the Slater matrix
elements, all of the samek.

The first two modules are set up for general applications whereas the last two implement
and test the current algorithm.
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Extensive tests were performed for the evaluation of the Slater matrix elements and the
Slater integrals for a variety of parameters but only a few sets are given here. The results are
obtained using a grid withZ= 1, h= 1/8, and 1/4, R= 160 a.u., andks= 4 and 8 where
nv= 52 for h= 1/8 andnv= 27 for h= 1/4.

The calculations were performed on a Sun workstation (CPU, UltraSPARC 143 MHz;
RAM, 64 MB) in double precision where the fractional part consists of 52 bits for an
accuracy of 15 significant digits. The user and system time is returned using the system
function DTIME (). We find the two schemes of the integration-by-cell algorithm are almost
equally efficient in terms of the user and system time. However, the results evaluated with
the second scheme mentioned in Subsection 3.4 are much less accurate for thens Slater
integrals such asF0(1s, 1s) andG0(1s, 2s)where the radial functions of the integrands are
localized near the origin. For example, for the above parameters andks= 8, the value of
F0(1s, 1s) evaluated with the second scheme is about 3 orders of magnitude less accurate.
The reason for this is obvious. The Slater matrix integrand has a singularity at the origin.
The difficulty of the cell integrals caused by the singularity at the origin is minimized by the
chosen Gaussian grid points which are densely populated near the origin in the first scheme
of the integration-by-cell algorithm while it is not treated with care in the second scheme.

In the following, we only compare the results evaluated with the first scheme of the
integration-by-cell algorithm and those with the traditional method of solving the differential
equations. The comparison of the time in setting up the Slater matrix elements is shown
in Table I wheret1 is the time with the traditional method andt2 is the time with the first
scheme of the integration-by-cell algorithm including the time for evaluating the splines
at the new points. We find that the integration by cell method is several times faster in

TABLE I

User and System Time in Seconds for Setting Up All of the Slater Matrix Elements

for ks = 4 and 8 on a Sun Workstation (CPU, UltraSPARC 143 MHz; RAM, 64 MB)

h= 1/8 h= 1/4

k t1 t2 t1/t2 k t1 t2 t1/t2

ks= 4 ks= 4

0 1.1 .11 10. 0 .33 .041 7.9
1 1.1 .10 11. 1 .32 .038 8.3
2 1.1 .10 11. 2 .32 .038 8.3
3 1.1 .11 11. 3 .32 .039 8.3
4 1.1 .11 11. 4 .32 .039 8.3
6 1.1 .11 11. 6 .32 .039 8.3

ks= 8 ks= 8

0 10. 1.5 6.9 0 3.0 .74 4.0
1 10. 1.5 6.9 1 3.0 .74 4.0
2 10. 1.5 6.9 2 3.0 .74 4.0
3 10. 1.5 6.9 3 3.0 .74 4.0
4 10. 1.5 6.9 4 3.1 .74 4.1
6 10. 1.5 6.9 6 3.0 .74 4.0

Note. k, the order of the Slater integrals;ks, the order of the B-splines;h, the starting step size of
the grid;t1, the time with the traditional method;t2, the time with the integration by cell method.
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TABLE II

Comparison of the Accuracy of SomeFk and Gk Integrals for Different Order of B-Splines ks

Fk/Gk Exact value Difference 1 Difference 2 t3(milliseconds)

(a)ks= 4

F0(1s, 1s) 5/8 −4.8(−09) −3.0(−11) 2.3
F0(1s, 2s) 17/81 −4.6(−10) −2.4(−11) 4.1
F0(1s, 2p) 59/243 1.6(−10) −1.6(−11) 4.0
F0(2s, 2s) 77/512 −1.3(−09) −6.8(−11) 2.1
F0(2s, 2p) 83/512 −6.8(−10) −4.5(−11) 4.1
F0(2p, 2p) 93/512 −6.6(−10) −2.5(−11) 2.4
F0(4s, 4s) 19541/524288 −3.8(−09) −5.3(−10) 2.1
F0(4s, 4p) 19943/524288 −3.2(−09) −4.6(−10) 4.0
F0(4s, 4d) 20693/524288 −1.3(−09) −3.6(−10) 4.0
F0(4s, 4 f ) 21743/524288 1.2(−10) −2.8(−10) 4.1
F0(4p, 4p) 20413/524288 −3.0(−09) −3.9(−10) 2.2
F0(4p, 4d) 21239/524288 −1.7(−09) −2.9(−10) 4.0
F0(4p, 4 f ) 22373/524288 −1.1(−12) −2.1(−10) 3.9
F0(4d, 4d) 22373/524288 −1.8(−09) −1.9(−10) 2.2
F0(4d, 4 f ) 23759/524288 −3.8(−10) −1.2(−10) 3.9
F0(4 f, 4 f ) 26333/524288 −5.6(−10) −4.3(−11) 2.2
G0(1s, 2s) 16/729 −7.3(−10) 2.5(−12) 2.4
G0(2p, 3p) 96768/9765625 −3.8(−10) 7.0(−12) 2.2
G0(2p, 4p) 560/177147 −2.0(−10) 4.1(−12) 2.2
G1(1s, 2p) 112/2187 −2.5(−10) 1.9(−12) 2.3
G1(2s, 2p) 45/512 −9.9(−10) −3.6(−11) 2.1
G1(2p, 3s) 92016/9765625 −1.0(−09) 1.8(−11) 2.2
G1(2p, 3d) 1824768/48828125 4.0(−11) 4.1(−12) 2.2
G1(2p, 4s) 5168/1594323 −5.5(−10) 1.3(−11) 2.1
G1(2p, 4d) 19120/1594323 −2.1(−10) 3.3(−12) 2.2
F2(4 f, 4 f ) 103275/3670016 −1.0(−09) −3.7(−11) 2.4
G2(2p, 3p) 110592/9765625 −8.9(−10) 2.3(−11) 2.2
G2(2p, 4p) 2128/531441 −5.2(−10) 1.3(−11) 2.1
G2(2p, 4 f ) 4784/1594323 −6.7(−11) 1.7(−12) 2.2
G3(2p, 3d) 1064448/48828125 −3.6(−10) 1.0(−12) 2.2
G3(2p, 4d) 3920/531441 −2.7(−10) 2.7(−12) 2.2
F4(4 f, 4 f ) 69003/3670016 −1.0(−09) −2.8(−11) 2.3
G4(2p, 4 f ) 1040/531441 −4.9(−11) 1.3(−12) 2.3
F6(4 f, 4 f ) 7293/524288 −6.9(−10) −2.1(−11) 2.2

(b) ks= 8

F0(1s, 1s) 5/8 −4.2(−15) 4.4(−16) 12
F0(1s, 2s) 17/81 −1.4(−15) 1.4(−16) 21
F0(1s, 2p) 59/243 −1.9(−15) −1.4(−16) 21
F0(2s, 2s) 77/512 −7.2(−16) 5.6(−17) 12
F0(2s, 2p) 83/512 −4.7(−16) 1.9(−16) 21
F0(2p, 2p) 93/512 −8.9(−16) 0.0(+00) 12
F0(4s, 4s) 19541/524288 −1.6(−14) −6.8(−16) 12
F0(4s, 4p) 19943/524288 −1.1(−14) −5.1(−16) 21
F0(4s, 4d) 20693/524288 −2.8(−15) −2.8(−16) 21
F0(4s, 4 f ) 21743/524288 8.8(−16) −6.2(−17) 21
F0(4p, 4p) 20413/524288 −8.9(−15) −3.5(−16) 12
F0(4p, 4d) 21239/524288 −3.3(−15) −1.7(−16) 21
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TABLE II —Continued

Fk/Gk Exact value Difference 1 Difference 2 t3(milliseconds)

(b) ks= 8

F0(4p, 4 f ) 22373/524288 4.0(−16) −9.7(−17) 21
F0(4d, 4d) 22373/524288 −2.2(−15) −6.9(−17) 12
F0(4d, 4 f ) 23759/524288 −8.3(−17) 3.5(−17) 21
F0(4 f, 4 f ) 26333/524288 6.2(−17) 2.8(−17) 12
G0(1s, 2s) 16/729 −6.6(−17) 2.8(−17) 12
G0(2p, 3p) 96768/9765625 −1.1(−16) 5.2(−18) 12
G0(2p, 4p) 560/177147 −7.0(−17) 1.3(−18) 12
G1(1s, 2p) 112/2187 −5.3(−15) 2.1(−17) 12
G1(2s, 2p) 45/512 −8.2(−14) 0.0(+00) 12
G1(2p, 3s) 92016/9765625 −3.0(−15) 2.1(−17) 12
G1(2p, 3d) 1824768/48828125 −6.9(−14) −2.1(−17) 12
G1(2p, 4s) 5168/1594323 −8.5(−16) 0.0(+00) 12
G1(2p, 4d) 19120/1594323 −9.0(−15) 1.7(−18) 12
F2(4 f, 4 f ) 103275/3670016 −6.3(−14) 3.1(−17) 12
G2(2p, 3p) 110592/9765625 −5.3(−16) 0.0(+00) 12
G2(2p, 4p) 2128/531441 −2.7(−16) −7.8(−18) 12
G2(2p, 4 f ) 4784/1594323 −2.9(−16) −1.3(−18) 12
G3(2p, 3d) 1064448/48828125 −9.7(−17) −1.7(−17) 12
G3(2p, 4d) 3920/531441 −1.1(−16) −4.3(−18) 12
F4(4 f, 4 f ) 69003/3670016 −7.8(−16) 3.8(−17) 12
G4(2p, 4 f ) 1040/531441 −1.9(−17) −1.7(−18) 12
F6(4 f, 4 f ) 7293/524288 −7.4(−16) 3.5(−17) 12

Note.The exact values of the Slater integrals are from Ref. [9]. Difference 1, the difference of the exact value
and the one evaluated with the traditional method; Difference 2, the difference of the exact value and the one
evaluated with the integration by cell method.t3, the user and system time of assembling the Slater integral from
the Slater matrix elements.

evaluating the Slater matrix elements than the traditional method by solving the differential
equations for all the choices ofks and the two cases ofh (1/8 and 1/4). Since accuracy
is also one of our major concerns, we compare the differences between the exact value
and the results evaluated with the two methods in Table II, where Difference 1 is the
deviation between the exact value and the Slater integral assembled from the Slater matrix
elements which are evaluated with the traditional method and the input parameterZ= 1;
Difference 2 is the deviation between the exact value and the Slater integral assembled
from the Slater matrix elements with the integration-by-cell method and the same input
parameters as Difference 1; andt3 is the user and system time of assembling the Slater
integral from the Slater matrix elements. We see that all of the Slater integrals obtained by
the integration by cell method are systematically at least as accurate as the one obtained by
the traditional method. Moreover, unlike the traditional method where some of the Slater
integrals, such asF0(4s, 4s), F2(4 f, 4 f ), are significantly less accurate than others, the
integration by cell method gives uniformly accurate results for all the Slater integrals.
Whenks increases the difference between the exact value of the Slater integrals and the
one evaluated with the integration by cell method decreases. Whenks= 8, both values
converge.

It is important to note that once all of the Slater matrix elements are prepared the user
and system timet3 in calculating the Slater integrals is trivial compared to the time needed
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in evaluating the matrix elements. It is obvious from the Tables I, II thatt3¿ t1 andt3¿ t2
for a givenks. Therefore, the effectiveness in the evaluation of the Slater matrix elements
demonstrated by the integration by cell method indeed significantly improves the evaluation
of the Slater integrals.

5. CONCLUSION

We have developed an algorithm for evaluating Slater integrals in a spline basis (B-spline).
The algorithm divides the two-dimensional radial region (r1, r2) into a number of rectangular
cells according to our chosen grid and implements the two-dimensional integration over each
individual cell using Gaussian quadrature in each dimension. Over the off-diagonal cells, the
two-dimensional cell-integrals are reduced to a product of two one-dimensional integrals.
Over each diagonal cell, the rectangular cell integral is transformed into two triangular cell
integrals to overcome the discontinuity of the integrand and the available B-spline values
used in the one-dimensional integration are reused. Furthermore, the scaling invariance of
the B-splines in the logarithmic region of the chosen grid is fully exploited. The values
of the Slater matrix elements and the given Slater integrals are obtained by assembling
the cell integrals. This algorithm significantly improves the efficiency and accuracy of the
traditional method of solving differential equations and renders the B-spline methods much
more effective when applied to multi-electron atomic systems.
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