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An algorithm for evaluating Slater integrals in a B-spline basis is introduced. Based
on the piecewise property of the B-splines, the algorithm divides the two-dimensional
(r1, rp) region into a number of rectangular cells according to our chosen grid and
implements the two-dimensional integration over each individual cell using Gaussian
quadrature. Over the off-diagonal cells, the integrands are separable so that each two-
dimensional cell-integral is reduced to a product of two one-dimensional integrals.
Furthermore, the scaling invariance of the B-splines in the logarithmic region of the
chosen grid is fully exploited such that only some of the cell integrations need to
be implemented. The values of given Slater integrals are obtained by assembling
the cell integrals. This algorithm significantly improves the efficiency and accuracy
of the traditional method that relies on the solution of differential equations and
renders the B-spline method more effective when applied to multi-electron atomic
Systems. © 1999 Academic Press
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1. INTRODUCTION

Critical to the success of the many-electron atomic structure calculation is an accurat
efficient evaluation of the Slater integrals. The Slater integrals are integrations of a prc
of four atomic radial functions and a coupling weighting factor over the two-dimensic
radial region, i.e.,

oo proo pk
R@bed = [ [ 5 Pr)RE2Pr P drydrs, (1)
0 0 >

where P,, Py, P, and Py are the radial functions of atomic orbitalsjs an integer, and
r_,r. are the min(y, ro) and max{y, r,), respectively. The radial function of orbitalis
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approximated by

Pa(r) ~ > & Bi(r), 2

whereB; (r) is the basis function ang the expansion coefficient.

Splines as basis functions in many-electron atomic systems were introduced ove
years ago when Altenberger-Siczek and Gilbert [1] investigated the two-electron heli
atom. Under the spline basis, the Slater integral becomes

Ri@. bic.d)=> > > abjcdyRG, j:i', ). ©)
[ N A

where the Slater matrix elemeRt(i, j;i’, j') is

RAG, J; I,J)—/ / =

In their work they used both cardinal splines and B-splines. Because of the apparently |:
number of numerical operations needed to evaluate this integral accurately, they fin
concluded that B-splines were not suitable for atomic structure calculations.

However, there has recently been a renewed interest in the use of B-splines in com
atomic systems: Bottcher and Strayer [2] applied the B-splines to time-dependent proble
Johnson and co-workers to many-body perturbation theory [3-5], Fischer and co-worl
[6-9] to Hartree—Fock calculations and continuum problems, Hansen and co-worker
orthogonal operators and Rydbergy series [10, 11], Decleva and co-workers [12—14
multichannel continuum problems, and van der Hart to R-matrix theory [15]. More detail
discussions can be found in a recent review by Sapirstein and Johnson [16].

Animportant developmentwas finding a method for evaluating the Slater matrix eleme

i (r2) drydra. 4)

[8, 9]. In this approach, the Slater matrix elemeR{si, j;i’, j’) are rewritten as
Ko i iy OQ1ks k Ks
R, J:1% 1) = EBi (r)Yjj (r) By (ry) dry, )
0
where
00 k
Yj“j/(rl):rl/o Bi*(r2) k+lB (r2) dr,. (6)

The functionY]-"j,(r) can be computed by solving the following differential equation for the
given boundary conditions

d2vk.(r)  kk+1 2k+1

D0 K v o - BB o)

Y[ (0) =0 (7)
d

—YK,(r) = _IfY.K r) + BS@)BS(r) asr — +oo
gr Y= T i i '

Then the Slater matrix element in Eq. (5) is obtained by direct integration. The Sla
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integrals as a quadruple summation of the matrix elements are subsequently assemb
order to avoid the two-point boundary value problem, Hartree [17] replaced the second-c
differential equation by a pair of first-order equations that could be integrated outward f
the origin and inward from large, a method suitable for numerical integration. Howeve
when used in spline-based applications, the special characteristics of the B-splines c
readily be exploited. In this paper, we have introduced and implemented an algorithm w
is designed specifically for the spline-based applications. It takes advantage of the piec
property and scaling invariance of the B-splines and implements the integration in Eq
by cells. Since the system and user time spent on the evaluation of the Slater matrix eler
is much more significant than that spent on assembling the Slater integrals from the m
elements, significant improvements in both efficiency and accuracy in evaluating the S
integrals are observed under the current algorithm.

2. SLATER INTEGRALS IN B-SPLINES

2.1. Definition of B-Splines

Following de Boor [18], we divide the interval [0, R] into segments. The endpoints
these segments are given by a knot sequgnce-1, 2, ..., n+ ks. The B-splines of order
ks, Biks(r), are a set of piecewise polynomials defined on the knot sequence recursivel
the relations

1, t<r<tn
Bi(r) = 8
(") {0, otherwise ®
and
ke -t ke—1 Gtk =7 Lkt
B*(r) = B* “(r)+ ————B73,7(r). 9
itke—1 — 1 bk — tiga

The functionBikS(r) is a piecewise polynomial of degrée— 1 inside the intervaf; <
r <tk which vanishes outside this interval. The sum at any podftall of the B-splines
is unity [19], i.e.,

Y Ber) =1. (10)

The set of B-splines of ordég on the knot sequendgforms a complete basis for piecewise
polynomials of degreés — 1 on the interval spanned by the knot sequence. The kn
defining our grid havés-fold multiplicity at the endpoints, namety=t; = --- =t =0
andth 1 =thi2= - - =thyk. = R. When multiple knots are encountered, limiting form:s
of the above recursive definition of the B-splines must be usedkd=srl, the B-splines
generally vanish at their endpoints. However, at0 the first B-spline is equal to 1 with all
others vanishing and at= R the last B-spline shows the same behavior as the first B-spli
at the origin. The two end B-splines are generally related to the boundary conditions o
problem under investigation [20]. A set of B-splines of order 5 in the region [0, 1] is sho
in Fig. 1.
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1.0

B’(r), i=1,14

FIG. 1. The set of B-splines of order 5 in the region [0, 1] on the knot sequgnret, = --- =t;=0,t =
ti—l +0.1 fori =6, 7, ceey, 15 andt15=t16= cee =tlg=1.

2.2. A General Grid for Atomic Systems

One of the advantages of a spline basis is that the choice of grid may be tailorec
the problem under investigation. A different type of grid can easily be used in differe
regions. In atomic physics calculation, a general grid for both bound and continuum st
for arbitrary nuclear charges was introduced by Fischer [7, 20] and subsequently app
successfully in the calculation of photoionization [12, 21]. In the grid definition, four dif
ferent parameters are introduced. They are the stephsiz2~™ with m an integer, the

maximum step sizbBnay the maximum rang®, and the order of splindg. The grid points
are defined through the arrgysuch that

t =0, fori =1,...,ks
tei=t+h, fori =ks,...,ks+m
ti1 =114 h), forl <ty —t < hmax
tir1 =t +hmax fort; < ZR

rn=t/zZ, foralli,

wherer is the radial coordinate and is the nuclear charge. The rules for setting such
knot sequence can be found in Ref. [20]. Briefly speaking, since the Hamiltonians of atol
systems and the corresponding orbital wavefunctions scale approximately with respe
the nuclear chargg, the knot sequence is defined for the varidbteZr. For the continuum
calculation, the logarithmic grid is shown to be a good choice for smatkcept near the
origin, where a constant grid can avoid the large numbers of small intervals. Meanwh
the logarithmic grid results in a very large step size for largevhich can be larger than
the wavelength of the oscillatory continuum wavefunctions, therefore a constant grid in
larger region is used.
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2.3. Symmetry of the Slater Matrix Elements

The Slater matrix elements have two types of symmetries—they are invariant unde
exchange of certain indices and are scaling invariant under coordinate displacement w
the exponential region.

2.3.1. Exchange symmetry of the Slater matrix elemefiom the definition of the
Slater matrix elements, it is trivial to show that the exchange of indieesli’, j andj’,
and{i, i’} and{j, j'} does not affect the result of the Slater matrix element, i.e.,

R, 517, 1) = R4, Jiis )

= RYG j10))
= R(j.i:j 10
= R(j% s )1
= R(j.i% 00
= R .0

=R, %0, ).

Therefore, only about/B of the Slater matrix elements need to be evaluated.

2.3.2. Scaling laws of the Slater matrix elemenfEhe grid with an exponentially in-
creasing interval length results in several properties that can be exploited to avoid redur
calculations. Suppose the splines discussed lie entirely within the exponential region. ¢
the splines are normalized such that the sum of the values at any point in the range |
is equal to unity, a simple displacement invariance applies. Let the left-most knot defir
Biks(r) bet; and letr =t; +s. Then

Bt +5) = B, (L4 h)(t +9) = B, (tii1+S(L+h)). (11)

From the displacement invariance of the splines, several scaling laws exist [22]. The
relevant to the Slater matrix elements are

(B, (OINMBS, M) = A+ WM (BEMIrKBIe(r)) (12)
RG+Lj4+LiIT+1 | +1)=A+hRG ;0 ). (13)

However, the most valuable properties to the current integration by cell method are
scaling laws over individual cells, i.e.,

livt2 Myl
/ B 1(N Bl (Nrkdr = (1+h)1+k/ Bi(r)BI*(r)rkdr (14)

liy41 liv

and

livt2 Mjvs2
/ / kj—l |+1(rl) BJ+1(r2) B| +1(rl) B] +1(r2) drler
livt1 Mju+1 >

liv+1 Mjvt1
—asn [T

A detailed proof of the scaling laws over a cell is given in Appendix A of Ref. [23].

S(rz) Bl (r1) B (rp)drydr,. (15)
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3. INTEGRATION BY CELL ALGORITHM

The distinguishing feature of the B-splines is their piecewise property. Every spline
a positive polynomial over a finite range.Kf order B-splines are chosen, the sleﬂ@
is non-trivial only in the range from knatto knoti + kg, i.e., the splineBiks is non-zero
only in intervals MAX(1 i —ks+ 1), MAX(1,i —ks+1)+1, ..., MIN(i, nv), wherenv
is the total number of intervals. This feature leads to an important constraint such the
any intervali v in the one-dimensional region, the number of splines whose values are
zero is always. In fact the non-zero ones are the splinesv+ 1, ..., andiv + ks— 1.
Other splines at intervab simply vanish. When this property is applied to the Slater matri;
elements

RAG, J; w)-/ / =

RX@, j;i’, j)=0,ifeither|i’—i| > ks or|j’ — j| > ks. Moreover, the integration contribut-
ing to R(i, j;i’, j") extends over only the cells in Which‘S(rl) and Bikf (r1), and B}‘S (r2)
and B}‘?(rz) overlap. Because of the symmetry of the Slater matrix elements, we can asst
without loss of generality that<i’, j < j’, andi < . The area over which the integrand
contributes to the Slater matrix elemeRit(i, j;i’, j’) is illustrated in Fig. 2. The area is a
block of cells stretching from interval— ks + 1 toi’ in ther; direction and from interval

j —ks+1toj’inther, direction. The integration by cell algorithm exploits this feature
thoroughly. Since there are ority splines which are not zero along theor r, direction in
each cell, we can integrate all the non-trivfigli’, j, j’} combinations over each individual
cell first. The Slater matrix elements are then obtained as a summation of the cell integr

i°(r2) Bf(r1) B! s(fz) drydry, (16)

3.1. Integration over the Off-Diagonal Cells

Over the off-diagonal cells the integrand in the Slater matrix element is separable
the integration limits are not coupled. Therefore, the two-dimensional integral is redu
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FIG. 2. lllustration of the area over which the integrand of the Slater matrix elefé&t j;i’, j') is non-

trivial. The area is a block of cells stretching from intervat ks + 1 to i’ in ther; direction and from interval
j —ks+1to " inther, direction.
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to a product of two one-dimensional integrals. Assume jv. Then

k bt fliet T8y ke ke ks
RG, J5 17, J%5 1w, ju) = k+1B (r)Bj*(r2)Bi#(r) By (r) dradr

Tivt1 Mov1 1
:/ rll(BikS(rl)Bik/S(rl)drl/ R Bks(fz)B 7(rz) drz
liv r

jv

= G, i) ) r YL ), 17)
where
liv41 K K
G, i’ iv) = / r¥Be(ry) B (ry) dry, (18)
liy
S, vt ]
r= DG o) =/ EB}‘S(rz)B]‘?(rz)drz. (19)
My 2
Although there are, (n, — 1) off-diagonal cells, we only need to calculate and storenthe
two-dimensional moment array§(, i’; i v) andr“"“)(j j’; jv) for later assembly. The
arrays ofrX(i,i’;iv) andr =& i’ iv) with i, i’ = ,ksandiv=1,...,n, can be
evaluated effectively using Gaussian quadrature IagltBaussuan points. Note that becaus
rkG, i iv) = ki’ isiv) (20)
r® G ) = D ), (21)

only rk(,i’;iv) andr=®*V(,i’; jv) such thai <i’ need to be evaluated. Moreover, the
evaluation can be further reduced by using the scaling law in Eq. (14) in the logarithmic
region. The storage of(i,i’;iv) andr ~® D i’; jv) takesnvks2 locations in memory,
ignoring symmetry, though only about half these need to be computed.

3.2. Integration over the Diagonal Cells

Over the diagonal cells the two coordinates in the integrand (the integration limits) of
Slater matrix elements are coupled. Moreover, the integrand is not continuous acros
cell diagonal where, =r,. Although there are only, cells, the diagonal cell integration
is the most CPU intensive part in the evaluation of the Slater matrix element and it is .
the major barrier towards achieving highly accurate matrix elements.

We separate the rectangular cell into two triangles so that the integrand inside each tri:
is continuous. The integration over the rectangular cell is then a summation of integrat
over the two triangles, which are symmetric with respect to index exchanges, i.e.,

K o . . rlu+1 r|u-¢—1 rk K k. K K
RG, j; 1", jsiv) = / / rkil Bi*(r))B*(r2) Bi* (r) By (rz) drydre
v liy >

iv

lv¢l ]
+r§ / sl Bi*(r2)B(r2) drz}
f 2

= RKG, j,i’, | iv) + RX(j,i, j,i%iv) (22)

livt1 1 r
= / Biks(rl)Bi‘fS(rl)drl-{m / rsBl°(r2) B¢ (ro) drp
li 1 liy
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where

o liy+1 1 r
RK (i, j. 17, jsiv) = / BikS(u)Bikf(rl)dnfm / rsBe(r) B (o dre.  (23)
liy 1 Fiy

We use Gaussian quadrature again to do the integration over the triangular cell in Eq. (
The key for an effective evaluation is to choose Gaussian grid points such that the a\
able B-spline values used in the one-dimensional integration can be exploited and the
B-spline values needed to achieve the required accuracy are minimized. We know
n point Gaussian integration has 2 1 degrees of accuracy. It is obvious that at least
ks by ks Gaussian grid with respect to both coordinates is needed to achieve the higl
algebraic accuracy for the integrals in Eq. (23) kot 0. Therefore, we apply the origi-
nal Gaussian points used in the evaluation of one-dimensional integféls,; i v) and
r=&+D(j, j’s jv), to the two-dimensional integration with respect to coordimatén the
two-dimensional integration regarding coordinatiewe also usés Gaussian points. A
graphical representation of the chosen Gaussian points fe8 is shown in Fig. 3. The
star is the original Gaussian point used in the one-dimensional integration and the ci
is the Gaussian point used in current triangular cell integration. With this two-dimensiol
grid, the difficulty of the cell integrals near the origin because of the singularity of tt
integrand is minimized and uniformly accurate results for all the Slater integrals can
obtained. The evaluation can be further reduced by using the scaling law in Eq. (15
the logarithmic grid region. The full storage B (i, j,i’, j’; iv) takesn,k? locations in
memory, ignoring symmetrgi <i’, j < j’,i < j) though now only about/B of the values
need to be computed. Practical calculation demonstrates the effectiveness of current cl
of grid points (see later section).

3.3. Assembly of the Cell Integrals

Once all the cell integralis'(i, i’; iv), r = D}, j’; jv), andRX (i, j,i’, j; iv) are pre-
pared, the Slater matrix elements in Eq. (16) can be assembled straightforwardly

EES * * * * *u
kK * * * * vg@
ok ok * * * %
o O
* ok * R
LN O [0}
@] O
T * * % %
6} o o
O O
¥ ¥ b’ ® % * \%}QE
O
NP -
5 & ¢
o & é % & ® @ 8
i, r

1

FIG. 3. Graphical representation of the Gaussian pointkfer 8. The star is the original Gaussian point
used in the one-dimensional integration and the circle is the Gaussian point used in current two-dimensiona
integration.
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FORTRAN 90 code for evaluating the cell integrals and assembling the Slater matrix
ments from the cell integrals can be found in Ref. [23]. The computational effort of putt
the pieces together is almost trivial. Since the Slater matrix elements need more spe
store than the cell integrals, itis more efficient to store the cell integrals directly. When n
for the Slater matrix elements arises, we can assemble them immediately.

Once all of the Slater matrix elements are assembled, the value of any Slater integ!
Eq. (3) can be easily obtained.

3.4. An Alternative to the Diagonal-Cell Integration

The integration over a diagonal cell in Eq. (22) can be implemented in an alternative \
The cell integral can be rewritten as

Ko _ livs1 q K ok ke liv+1 q 1 ke ke
R, 51, ) i) = riry Bi*(ry) B2 (ra) 201 Bi*(r2)B;>(r2)
r fiv 2

fivid ke ke n ke K i r¥
+ driB>(r) B> (ra) erBj (ro) ij (ro) I Tkt (¢
r Fiy

1
ry ra

iv

(24)

where the first term in Eq. (24) is a product of two one-dimensional integrals which
evaluated during the off-diagonal cell integrationin Eqg. (17) and the second termis a cou
two-dimensional integral over a triangular cell. The second term has a nice property
that the integrand is zero along the hypotenuse of the cell and becomes most signif
at the low-right corner of the cell (Fig. 4). To exploit this property, we make a coordin:

S * * * * * X
X% ¥ * * * * ﬁj\
O
I S T * K % ¥
O Y
v % % * *0 % #
O @]
o
= o o
* ¥k *  * %
o 5 o
O O
Kk )O * O Q*é
@] ) 0]
] O
K ok o * ¥ O % 0O
- ™ O
oMo e T ¥ o Ly
|v r

FIG. 4. Graphical representation of the Gaussian point&fet 8. The stars represent the points that woulc
be used for two-dimensional integration over the square using Gaussian quadrature in each dimension a
circles represent the points used in the current two-dimensional cell integration over the triangle.
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rotation
r{+r
X — 1\4/-2 2
(25)
y = ri+rz
V2

where the new coordinatesandy are always positive in the integration area. The secon
term in Eq. (24) is then transformed as

o, 7z X+Y\ i/ X+Y
RG, j:i’,j i) :«/5/ dy/ dx S( >B<,S( )
terme 0 V2ri,+y f Nz l NZ

, B,ks<><—y> Bk?<X—y>{ X=y*  x+y* } (26)
"Av2 )TN V2 )Lyt (=Rt [

Again we use two-dimensional Gaussian quadrature to perform the integration over
triangular cell. In Fig4 a graphical representation of the adapted optimal Gaussian poi
is shown. The stars represent the original Gaussian points that would be used in a
dimensional integration over the square and the circles represent the Gaussian point
in the current triangular cell integration over the triangle. With this two-dimensional gri
greater weight of integration is located at the low-right corner of the triangular cell whe
the integrand is most significant. This approach however has drawbacks. Note that
transformation results in a singularity in the integrands wheny (orr, = 0) and also when

x =—y (orr; =0). The present scheme does not pay special attention to these singular
of the integrand at the origin. Moreover, the B-spline itself as a function of one varial
ry orr, becomes a function of two variablesandy, which leads to more computational

effort during the integration. As the results in the next section will show, this approach
not as accurate.

4. RESULTS AND DISCUSSIONS

We have implemented the two variants of the integration-by-cell algorithm for the Sla
matrix elements in FORTRAN 90 and assembled the Slater integrals thereafter. The tr
tional algorithm based on solving the differential equation is also implemented for comp
ison. The Slater integral package we developed is divided into 4 modules.

definegrid This first module gets input parameters for the grid and sets up the kne
for splines according to our grid scheme.

define_spline This second module initializes the splines and their derivatives ar
evaluates the hydrogenic matrix elements (the one-electron Hamiltonian operator in s
basis).

set Slater_matrix _elements This third module sets up the Slater matrix elements fo
a givenk with both the integration-by-cell algorithm and the traditional one.

test Slater_integrals The fourth module determines a set of hydrogenic orbitals il
terms of the spline basis and calculates a series of Slater integrals from the Slater m.
elements, all of the sanie

The first two modules are set up for general applications whereas the last two implen
and test the current algorithm.
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Extensive tests were performed for the evaluation of the Slater matrix elements an
Slater integrals for a variety of parameters but only a few sets are given here. The resul
obtained using a grid witZ =1, h=1/8, and ¥4, R=160 a.u., ands =4 and 8 where
nv=>52forh=1/8 andnv =27 forh=1/4.

The calculations were performed on a Sun workstation (CPU, UltraSPARC 143 M
RAM, 64 MB) in double precision where the fractional part consists of 52 bits for
accuracy of 15 significant digits. The user and system time is returned using the sy:
function DTIME (). We find the two schemes of the integration-by-cell algorithm are almc
equally efficient in terms of the user and system time. However, the results evaluated
the second scheme mentioned in Subsection 3.4 are much less accuratenfoStager
integrals such ag°(1s, 1s) andG°(1s, 2s) where the radial functions of the integrands ar
localized near the origin. For example, for the above parametergsan@, the value of
FO(1s, 1s) evaluated with the second scheme is about 3 orders of magnitude less acct
The reason for this is obvious. The Slater matrix integrand has a singularity at the or
The difficulty of the cell integrals caused by the singularity at the origin is minimized by t
chosen Gaussian grid points which are densely populated near the origin in the first scl
of the integration-by-cell algorithm while it is not treated with care in the second scherr

In the following, we only compare the results evaluated with the first scheme of
integration-by-cell algorithm and those with the traditional method of solving the differen
equations. The comparison of the time in setting up the Slater matrix elements is sk
in Table | wheret; is the time with the traditional method amgdis the time with the first
scheme of the integration-by-cell algorithm including the time for evaluating the splir
at the new points. We find that the integration by cell method is several times faste

TABLE |
User and System Time in Seconds for Setting Up All of the Slater Matrix Elements
for ks=4 and 8 on a Sun Workstation (CPU, UltraSPARC 143 MHz; RAM, 64 MB)

h=1/8 h=1/4
k t t ti/t2 k t t2 ti/t2
ks=4 ke=4
0 1.1 A1 10. 0 .33 .041 7.9
1 1.1 .10 11. 1 .32 .038 8.3
2 1.1 .10 11. 2 .32 .038 8.3
3 1.1 A1 11. 3 .32 .039 8.3
4 1.1 A1 11. 4 .32 .039 8.3
6 1.1 A1 11. 6 .32 .039 8.3
ks=8 ks=8
0 10. 1.5 6.9 0 3.0 74 4.0
1 10. 1.5 6.9 1 3.0 74 4.0
2 10. 1.5 6.9 2 3.0 74 4.0
3 10. 1.5 6.9 3 3.0 74 4.0
4 10. 1.5 6.9 4 3.1 74 4.1
6 10. 1.5 6.9 6 3.0 74 4.0

Note. k the order of the Slater integrals;, the order of the B-splines, the starting step size of
the grid;t;, the time with the traditional methot, the time with the integration by cell method.
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TABLE Il

Comparison of the Accuracy of SomeF* and G* Integrals for Different Order of B-Splines ks

Fk/Gk Exact value Difference 1 Difference 2 tz(milliseconds)
(a) ks =4
FO(1s, 1s) 5/8 —4.8(—09) —3.0(-11) 2.3
FO(1s, 2s) 17/81 —4.6(-10) —2.4(-11) 4.1
FO(1s, 2p) 59/243 1.6¢10) —1.6(-11) 4.0
FO(2s, 2s) 77/512 —1.3(-09) —6.8(-11) 21
Fo(2s, 2p) 83/512 —6.8(-10) —4.5(-11) 4.1
F°(2p, 2p) 93/512 —6.6(—10) —2.5(-11) 24
FO(4s, 4s) 19541/524288 —3.8(-09) —5.3(-10) 2.1
FO(4s, 4p) 19943524288 —3.2(-09) —4.6(-10) 4.0
FO(4s, 4d) 20693524288 —1.3(-09) —3.6(-10) 4.0
FO4s, 4f) 21743524288 1.2¢10) —2.8(-10) 4.1
FO(4p, 4p) 20413524288 —3.0(-09) —3.9(-10) 2.2
Fo(4p, 4d) 21239524288 —1.7(-09) —2.9(-10) 4.0
Fo4p, 4f) 22373524288 —-1.1(-12) —2.1(-10) 3.9
F°(4d, 4d) 22373524288 —1.8(-09) —1.9(-10) 2.2
Fo4d, 4f) 23759524288 —3.8(-10) —1.2(-10) 3.9
Fo4f, 4f) 26333524288 —5.6(—10) —4.3(-11) 2.2
GO(1s, 2s) 16/729 —7.3(-10) 2.5¢12) 24
G°2p, 3p) 967689765625 —3.8(-10) 7.012) 2.2
G°(2p, 4p) 560/177147 —2.0(-10) 4.1¢12) 2.2
Gl(1s,2p) 112/2187 —2.5(-10) 1.9¢12) 2.3
G1(2s,2p) 45/512 —9.9(-10) —3.6(-11) 21
G(2p, 3s) 920169765625 —1.0(-09) 1.8¢11) 2.2
G1(2p, 3d) 182476848828125 4.0€11) 4.1¢12) 2.2
G1(2p, 4s) 5168/1594323 —5.5(-10) 1.3¢11) 21
G'(2p, 4d) 19121594323 —2.1(-10) 3.3¢12) 2.2
F2(4f,4f) 1032753670016 —1.0(-09) —3.7(-11) 24
G2(2p, 3p) 1105929765625 —8.9(-10) 2.3¢11) 2.2
G2(2p, 4p) 2128531441 —5.2(-10) 1.3¢11) 2.1
G?(2p, 4f) 4784/1594323 —6.7(-11) 1.7¢12) 2.2
G3(2p, 3d) 106444848828125 —3.6(-10) 1.012) 2.2
G3(2p, 4d) 3920531441 —2.7(-10) 2.7¢12) 2.2
F44f, 4f) 690033670016 —1.0(-09) —2.8(-11) 2.3
G*(2p, 4f) 1040/531441 —4.9(-11) 1.3¢12) 2.3
Fb(4f, 4f) 7293524288 —6.9(-10) —2.1(-11) 2.2
(b)ks=8
F0(1s, 1s) 5/8 —4.2(-15) 4.4(16) 12
FO(1s, 2s) 17/81 —1.4(-15) 1.4(-16) 21
F°(1s, 2p) 59/243 —1.9(-15) —1.4(-16) 21
F0(2s, 2s) 77/512 —7.2(-16) 5.617) 12
Fo(2s, 2p) 83/512 —4.7(-16) 1.9¢-16) 21
F°(2p, 2p) 93/512 —8.9(-16) 0.06-00) 12
FO(4s, 4s) 19541/524288 —1.6(-14) —6.8(-16) 12
FO(4s, 4p) 19943524288 —-1.1(-14) —5.1(-16) 21
FO(4s, 4d) 20693524288 —2.8(-15) —2.8(-16) 21
FO(4s, 4f) 21743524288 8.8¢16) —6.2(-17) 21
Fo(4p, 4p) 20413524288 —8.9(-15) —3.5(-16) 12
FO(4p, 4d) 21239524288 —3.3(-15) —1.7(-16) 21
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TABLE Il —Continued

Fk/G Exact value Difference 1 Difference 2 tz(milliseconds)
(b)ks=8
Fo(4p, 4f) 22373524288 4.0¢16) —9.7(-17) 21
FO(4d, 4d) 22373524288 —2.2(-15) —6.9(-17) 12
Fo4d, 4f) 23759524288 —8.3(-17) 3.5¢17) 21
Fo(4f, 4f) 26333524288 6.2¢17) 2.8¢17) 12
GO(1s, 2s) 16/729 —6.6(—17) 2.8¢17) 12
G°(2p, 3p) 967689765625 —1.1(-16) 5.2(-18) 12
G°(2p, 4p) 560/177147 —7.0(-17) 1.3¢18) 12
Gl(1s, 2p) 112/2187 —5.3(-15) 2.1¢17) 12
G(2s, 2p) 45/512 —8.2(-14) 0.0¢-00) 12
G'(2p, 3s) 92019765625 —3.0(-15) 2.1¢17) 12
G*(2p, 3d) 182476848828125 —6.9(-14) —2.1(-17) 12
G(2p, 4s) 5168/1594323 —8.5(—16) 0.06-00) 12
G(2p, 4d) 1912(0y1594323 —9.0(-15) 1.7¢18) 12
F2(4f, 4f) 1032753670016 —6.3(-14) 3.1¢17) 12
G2(2p, 3p) 1105929765625 —5.3(-16) 0.06-00) 12
G2(2p, 4p) 2128/531441 —2.7(-16) —7.8(—18) 12
G2(2p, 4f) 4784/1594323 —2.9(-16) —1.3(-18) 12
G3(2p, 3d) 106444848828125 —-9.7(-17) —-1.7(-17) 12
G3(2p, 4d) 3920/531441 —1.1(-16) —4.3(-18) 12
F44f, 4f) 690033670016 —7.8(-16) 3.8¢17) 12
G*(2p, 4f) 1040/531441 —1.9(-17) —1.7(-18) 12
Fb(4f, 4f) 7293/524288 —7.4(-16) 3.5¢17) 12

Note.The exact values of the Slater integrals are from Ref. [9]. Difference 1, the difference of the exact v:
and the one evaluated with the traditional method; Difference 2, the difference of the exact value and the
evaluated with the integration by cell methag.the user and system time of assembling the Slater integral fro
the Slater matrix elements.

evaluating the Slater matrix elements than the traditional method by solving the differer
equations for all the choices &f and the two cases df (1/8 and %/4). Since accuracy
is also one of our major concerns, we compare the differences between the exact
and the results evaluated with the two methods in Table I, where Difference 1 is
deviation between the exact value and the Slater integral assembled from the Slater n
elements which are evaluated with the traditional method and the input paraietéy
Difference 2 is the deviation between the exact value and the Slater integral assen
from the Slater matrix elements with the integration-by-cell method and the same ir
parameters as Difference 1; atidis the user and system time of assembling the Slat
integral from the Slater matrix elements. We see that all of the Slater integrals obtaine
the integration by cell method are systematically at least as accurate as the one obtair
the traditional method. Moreover, unlike the traditional method where some of the Sl
integrals, such ag&°(4s, 4s), F2(4f, 4f), are significantly less accurate than others, th
integration by cell method gives uniformly accurate results for all the Slater integr:
Whenkg increases the difference between the exact value of the Slater integrals an
one evaluated with the integration by cell method decreases. \ke8, both values
converge.

It is important to note that once all of the Slater matrix elements are prepared the
and system timé&; in calculating the Slater integrals is trivial compared to the time need
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in evaluating the matrix elements. It is obvious from the Tables I, lltthat t; andt; <« t,

for a givenks. Therefore, the effectiveness in the evaluation of the Slater matrix elemel
demonstrated by the integration by cell method indeed significantly improves the evalua
of the Slater integrals.

5. CONCLUSION

We have developed an algorithm for evaluating Slater integrals in a spline basis (B-spli
The algorithm divides the two-dimensional radial regiani(z) into a number of rectangular
cells according to our chosen grid and implements the two-dimensional integration over €
individual cell using Gaussian quadrature in each dimension. Over the off-diagonal cells,
two-dimensional cell-integrals are reduced to a product of two one-dimensional integr
Over each diagonal cell, the rectangular cell integral is transformed into two triangular ¢
integrals to overcome the discontinuity of the integrand and the available B-spline val
used in the one-dimensional integration are reused. Furthermore, the scaling invarianc
the B-splines in the logarithmic region of the chosen grid is fully exploited. The valu
of the Slater matrix elements and the given Slater integrals are obtained by assemt
the cell integrals. This algorithm significantly improves the efficiency and accuracy of t
traditional method of solving differential equations and renders the B-spline methods mi
more effective when applied to multi-electron atomic systems.

ACKNOWLEDGMENTS

This work was supported by the Division of Chemical Sciences, Office of Basic Energy Sciences, Office
Energy Research, U.S. Department of Energy.

REFERENCES

1. A. Altenberger-Siczek and T. L. Gilbert, Spline bases for atomic calculatio@hem. Phys$4, 432 (1976).

2. C.Bottcher and M. R. Strayer, Relativistic theory of fermions and classical field on a collocation kattice,
Phys. (N.Y.L75 64 (1987).

3. W. R. Johnson and J. Sapirstein, Computation of second-order many-body corrections in relativistic atc
Phys. Rev. Let67, 1126 (1986).

4. W. R. Johnson, M. Idrees, and J. Sapirstein, Second-order energies and third-order matrix elements of .
atoms,Phys. Rev. 85, 3218 (1987).
5. W. R. Johnson, S. A. Blundell, and J. Sapirstein, Finite basis sets for the Dirac equation constructed fro
splines,Phys. Rev. 85, 3218 (1988).
6. C. Fischer and M. Idrees, Spline algorithms for continuum functiGosyput. Phys3, 53 (1989).
7. C. Fischer and M. Idrees, Spline methods for resonances in photoionization cross sédtibys, B23, 679
(1990).
8. C. Fischer and W. Guo, Spline algorithms for the Hartree—Fock equation for the helium ground st
J. Comput. Phy90, 486 (1990).
9. C. Fischer, W. Guo, and Z. Shen, Spline methods for multiconfiguration Hartree—Fock calculatio
Int. J. Quantum. Chend2, 849 (1992).
10. Y. T. Shen, M. Landtman, and J. E. Hansen, Ab-initio calculation of orthogonal parameters for comg
configurations using B-splines, Phys. B23, L121 (1990).
11. H.van der Hart and J. E. Hansen, Calculation of double-excited states irHan®! N+ using B-splines,
J. Phys. B25, 41 (1992).



12.

13.

14.

15.

16.

17.
18.
19.

20.

21.

22.

23.

SLATER INTEGRALS IN A SPLINE BASIS 271

P. Decleva, A. Lisini, and M. Venuti, Multichannel continuum states by a least-squares approach in a s
basis: Application to He and Hphotoionization)). Phys. B27, 4867 (1994).

M. Venuti, P. Decleva, and A. Lisini, Accurate multichannel continuum states by a general configura
interaction expansion in a B-spline basis: Application to He photoionizalidPhys. B29, 5315 (1996).

M. Venuti and P. Decleva, Convergent multichannel continuum states by a general configuration inters
expansion in a B-spline basis: Application to Hhotodetachmend, Phys. B30, 4839 (1997).

H. van der Hart, B-spline methods in R-matrix theory for scattering in two-electron syskeRis;s. B30,
453 (1997).

J. Sapirstein and W. R. Johnson, The use of basis splines in theoretical atomic Fhyigs, B29, 5213
(1996).

C. FischerThe Hartree—Fock Method for Aton(ié/iley, 1977) New York.

C. deBoorA Practical Guide to Spline€Springer-Verlag, New York, 1978).

A.S.Umar, J. Wu, M. R. Strayer, and C. Bottcher, Basis-spline collocation method for the lattice solutic
boundary value problemsd, Comput. Phy3, 426 (1991).

T. Brage, C. F. Fischer, and G. Miecznik, Non-variational, spline-Galerkin calculations of resonance posi
and widths, and photodetachment and photoionization cross sections fandHHe,J. Phys. B25, 5289
(1992).

J. H. Xi and C. Fischer, Cross section and angular distribution for the photodetachment t$242p* P°)
below the Heff = 4) thresholdPhys. Rev. A3, 3169 (1996).

C. F. Fischer, Concurrent vector algorithms for spline solutions of the helium pair equ@tidnSupercom.
Appl.5, 5 (1991).

Yanghui Qiu,Integration by Cell Algorithm for Slater Integrals in a Spline Basiesis, Vanderbilt
University, May 1999 (unpublished).



	1. INTRODUCTION
	2. SLATER INTEGRALS IN B-SPLINES
	FIG. 1.

	3. INTEGRATION BY CELL ALGORITHM
	FIG. 2.
	FIG. 3.
	FIG. 4.

	4. RESULTS AND DISCUSSIONS
	TABLE I
	TABLE II
	TABLE II—Continued

	5. CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

